Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction

نویسندگان

  • Chunfeng Lian
  • Su Ruan
  • Thierry Denoeux
  • Fabrice Jardin
  • Pierre Vera
چکیده

As a vital task in cancer therapy, accurately predicting the treatment outcome is valuable for tailoring and adapting a treatment planning. To this end, multi-sources of information (radiomics, clinical characteristics, genomic expressions, etc) gathered before and during treatment are potentially profitable. In this paper, we propose such a prediction system primarily using radiomic features (e.g., texture features) extracted from FDG-PET images. The proposed system includes a feature selection method based on Dempster-Shafer theory, a powerful tool to deal with uncertain and imprecise information. It aims to improve the prediction accuracy, and reduce the imprecision and overlaps between different classes (treatment outcomes) in a selected feature subspace. Considering that training samples are often small-sized and imbalanced in our applications, a data balancing procedure and specified prior knowledge are taken into account to improve the reliability of the selected feature subsets. Finally, the Evidential K-NN (EK-NN) classifier is used with selected features to output prediction results. Our prediction system has been evaluated by synthetic and clinical datasets, consistently showing good performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners

OBJECTIVES To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. METHODS 118 patients were included retrospectively. Two groups (G1, G2) were defined according t...

متن کامل

Exploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict treatment response in patients with metastatic and recurrent Brest tumors

Aim: Despite grate progress in treatments, breast cancer is still the most common invasive cancer and the most cause of cancer related death in women. Treatment could be improved and perhaps standardized if more reliable markers for tumour progression and poor prognosis could be developed. The aim of this study was to evaluate whether patient-based machine learning (ML) driven ...

متن کامل

Radiomics modelling of IMRT induced acute rectal toxicity using clinical and magnetic resonance imaging features

Introduction: Rectal toxicity is a dose limiting issue in prostate cancer radiotherapy. Prediction of these effects may be used to tailor the therapy. The purpose of this work was to develop predictive radiomic models based on clinical, dosimetric and radiomic features extracted from rectal wall magnetic resonance image (MRI).   Materials and Methods: This st...

متن کامل

Reproducibility of F18‐FDG PET radiomic features for different cervical tumor segmentation methods, gray‐level discretization, and reconstruction algorithms

Site-specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18 Flourine-fluorodeoxyglucose (18 F-FDG) PET images for three parameters: manual versus computer-aided segmentation methods, gray-level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatme...

متن کامل

Prostate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches

Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response.   Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image analysis

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016